注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)工業(yè)技術(shù)一般工業(yè)技術(shù)鋰離子電池均衡控制(Equalization Control for Lithium-Ion Batteries)

鋰離子電池均衡控制(Equalization Control for Lithium-Ion Batteries)

鋰離子電池均衡控制(Equalization Control for Lithium-Ion Batteries)

定 價(jià):¥158.00

作 者: 陳劍,歐陽權(quán),王志勝
出版社: 華中科技大學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 暫缺

ISBN: 9787577209418 出版時(shí)間: 2024-07-01 包裝: 精裝
開本: 16開 頁數(shù): 字?jǐn)?shù):  

內(nèi)容簡介

  鋰離子電池是市場上使用最廣泛的電池。其主要用途包括動(dòng)力電池和儲(chǔ)能電池。在實(shí)際應(yīng)用中,通常會(huì)串聯(lián)足夠多的電池以滿足高電壓需求,但電池組中的每個(gè)電池都不同,這會(huì)影響整個(gè)電池組的性能和壽命。如今,為了避免電池組中的不一致性,將采用電池均衡方法。電池均衡通常有兩種方法,包括保持電池之間的充電狀態(tài)一致和使電池之間的電壓相等。同時(shí),均衡控制策略還包括主動(dòng)小區(qū)均衡和被動(dòng)小區(qū)均衡。與消耗能量的被動(dòng)均衡策略相比,主動(dòng)電池均衡方法在電池之間傳遞能量,效率更高,均衡時(shí)間更短。此外,由于主動(dòng)細(xì)胞平衡策略的優(yōu)勢,它們吸引了大量的研究和商業(yè)興趣。因此,主動(dòng)均衡控制策略的設(shè)計(jì)對(duì)鋰離子電池組的安全和健康具有重要意義?,F(xiàn)在,根據(jù)拓?fù)浣Y(jié)構(gòu),所設(shè)計(jì)的均衡控制算法可以分為三類:1)單元間均衡,2)基于模塊的單元均衡和3)基于電池組的充電均衡。

作者簡介

  陳劍,浙江大學(xué)機(jī)械工程學(xué)院教授、博導(dǎo),*人才(青年),中國自動(dòng)化學(xué)會(huì)控制理論專委會(huì)委員、TCCT新能源控制學(xué)組主任、車輛控制與智能化專委會(huì)委員、智慧教育專委會(huì)委員等。研究方向包括計(jì)算機(jī)視覺、機(jī)器人感知與控制,智能駕駛,氫電混合動(dòng)力、燃料電池控制,非線性控制等。在機(jī)器人視覺伺服控制、非線性控制以及燃料電池系統(tǒng)建模與控制等領(lǐng)域取得了一些研究成果,合作發(fā)表了140余篇SCI/EI論文。

圖書目錄

Contents 1 Introduction .................................................. 1 1.1 Applications of Lithium-Ion Batteries . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 The Crucial Role of Batteries . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Comparisons of Different Batteries . . . . . . . . . . . . . . . . . . 4 1.2 Battery Inconsistency Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Crucial Role of Cell Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.1 Voltage-Based Equalization . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.2 SOC-Based Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Overview of Cell Equalization Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Classification and Comparisons of Cell Equalization Systems . . . 13 2.1.1 Passive Cell Equalization Systems . . . . . . . . . . . . . . . . . . . 13 2.1.2 Active Cell Equalization Systems . . . . . . . . . . . . . . . . . . . 15 2.1.3 Comparisons of Cell Equalization Systems . . . . . . . . . . . 16 2.2 Commercial Equalizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 Bidirectional Buck-Boost Converters . . . . . . . . . . . . . . . . 17 2.2.2 Bidirectional Modified C?uk Converters . . . . . . . . . . . . . . 19 2.3 Overview of Equalization Algorithms . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.1 Cell-to-Cell Equalization Algorithms . . . . . . . . . . . . . . . . 21 2.3.2 Cell-to-Pack-to-Cell Equalization Algorithms . . . . . . . . . 23 2.3.3 Charging Equalization Algorithms . . . . . . . . . . . . . . . . . . 24 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Active Cell Equalization Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1 Commonly Used Active Cell Equalization Topology . . . . . . . . . . 29 3.1.1 Adjacent-Based Topology . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.1.2 Non-adjacent-Based Topology . . . . . . . . . . . . . . . . . . . . . . 35 3.1.3 Direct Cell-Cell Topology . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.4 Mixed Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2 Active Cell Equalization Topology Comparison . . . . . . . . . . . . . . . 41 3.2.1 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.2 Economic Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4 Optimal Active Cell Equalizing Topology Design . . . . . . . . . . . . . . . . . 55 4.1 Cell Equalizing System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1.1 Equalizing System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.1.2 Consensus-Based Cell Equalizing Algorithm Design . . . 57 4.2 Design of the Optimal Equalizing Topology . . . . . . . . . . . . . . . . . . 59 4.2.1 Equalizing Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2.2 Traditional Cell Equalizing Topology . . . . . . . . . . . . . . . . 61 4.2.3 Position Identification of the Added ICEs for Reducing the Equalizing Time . . . . . . . . . . . . . . . . . . . 62 4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5 Neural Network-Based SOC Observer Design for Batteries . . . . . . . 73 5.1 Battery Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.2 RBF Neural Network Observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2.1 Neural Network Based Nonlinear Observer Design . . . . 75 5.2.2 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3 Experiments and Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.3.1 Experiment for Parameter Extraction . . . . . . . . . . . . . . . . 79 5.3.2 Experiment for SOC Estimation . . . . . . . . . . . . . . . . . . . . 81 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6 Active Cell-to-Cell Equalization Control . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.1 Cell Equalizing System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.1.1 Battery Cell Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.1.2 Bidirectional Modified C?uk Converter Model . . . . . . . . . 92 6.1.3 Cell Equalizing System Model . . . . . . . . . . . . . . . . . . . . . . 93 6.2 Objective and Constraints of the Cell Equalizing Process . . . . . . . 95 6.2.1 Cell Equalizing Objective . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.2.2 Cell Equalizing Constraints . . . . . . . . . . . . . . . . . . . . . . . . 96 6.3 SOC Estimation Based Quasi-Sliding Mode Control for Cell Equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.3.1 Adaptive Quasi-sliding Mode Observer Design for Cells’ SOC Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.3.2 Quasi-Sliding Mode-Based Cell Equalizing Control . . . 99 6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077 Module-Based Cell-to-Cell Equalization Control . . . . . . . . . . . . . . . . . 109 7.1 Module-Based Cell-to-Cell Equalization Systems . . . . . . . . . . . . . 109 7.1.1 Equalizing Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.1.2 Cell Equalizing System Model . . . . . . . . . . . . . . . . . . . . . . 112 7.1.3 Cell Equalizing Constraints . . . . . . . . . . . . . . . . . . . . . . . . 113 7.2 Hierarchical Optimal Control Strategy . . . . . . . . . . . . . . . . . . . . . . . 114 7.2.1 Cell Equalizing Task Formulation . . . . . . . . . . . . . . . . . . . 115 7.2.2 Top Layer: Module-Level Equalizing Control . . . . . . . . . 116 7.2.3 Bottom Layer: Cell-Level Equalizing Control . . . . . . . . . 118 7.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.3.1 Cell Equalizing Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.3.2 Tests of Different Weight Selections . . . . . . . . . . . . . . . . . 121 7.3.3 Comparison With Decentralized Equalizing Control . . . 123 7.3.4 Tests for Different Cells’ Initial SOCs . . . . . . . . . . . . . . . 124 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 8 Module-Based Cell-to-Pack Equalization Control . . . . . . . . . . . . . . . . 127 8.1 Improved Module-Based CPC Equalization System . . . . . . . . . . . 127 8.1.1 Equalizing Current Formulation . . . . . . . . . . . . . . . . . . . . . 128 8.1.2 Improved Module-Based CPC Equalization System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 8.2 Two-Layer Model Predictive Control Strategy . . . . . . . . . . . . . . . . 132 8.2.1 Cost Function Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 132 8.2.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 8.2.3 Centralized MPC Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8.3 Two-Layer MPC for Cell Equalization . . . . . . . . . . . . . . . . . . . . . . 134 8.3.1 Top-layer MPC: ML Equalizing Current Control . . . . . . 135 8.3.2 Bottom-Layer MPC: CMC Equalizing Current Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 8.3.3 Computational Complexity Comparison With Centralized MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.4 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 8.4.1 Equalization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 8.4.2 Comparison With the Centralized MPC . . . . . . . . . . . . . . 140 8.4.3 Comparison With a Commercial CPC-Based Equalization Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 8.4.4 Tests of Different Cells’ Initial SOC Vectors . . . . . . . . . . 142 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 9 Optimal Hierarchical Charging Equalization for Battery Packs . . . . 147 9.1 Charging System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9.1.1 Battery Pack Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 9.1.2 Multi-module Charger Modeling . . . . . . . . . . . . . . . . . . . . 148 9.1.3 Charging System Modeling . . . . . . . . . . . . . . . . . . . . . . . . 149 9.2 Hierarchical Control for the Charging Equalization System . . . . . 150 9.2.1 Charging Equalization Objectives . . . . . . . . . . . . . . . . . . . 1519.2.2 Charging Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 9.2.3 Top-Layer Control: Optimal Charging Current Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 9.2.4 Bottom-Layer Control: Charging Current Tracking . . . . 156 9.3 Simulation and Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 158 9.3.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 9.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 10 Simultaneous Charging Equalization Strategy for Battery Packs . . . 167 10.1 Charging Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 10.1.1 Battery Pack Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 10.1.2 Charging Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 10.1.3 Charging Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 10.2 Simultaneous Charging Development . . . . . . . . . . . . . . . . . . . . . . . 171 10.3 Simulation and Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 175 10.3.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 10.3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.shuitoufair.cn 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)