Topological Structures of Function Spaces是一本深入研究函數(shù)空間的拓?fù)浣Y(jié)構(gòu)的全新專著。它系統(tǒng)性地總結(jié)了過(guò)去二十年來(lái)(包括作者和其他學(xué)者)的相關(guān)研究成果,是當(dāng)前拓?fù)鋵W(xué)研究的重要資料。此書中涵蓋的內(nèi)容不僅適合拓?fù)鋵W(xué)的學(xué)術(shù)研究者使用,也對(duì)應(yīng)用數(shù)學(xué)和相關(guān)領(lǐng)域的學(xué)者有重要參考價(jià)值。
作者簡(jiǎn)介
楊忠強(qiáng),閩南師范大學(xué)二級(jí)教授,博士生導(dǎo)師。1990年和1994年分別在四川大學(xué)數(shù)學(xué)系和日本筑波大學(xué)數(shù)學(xué)研究所取得理學(xué)博士學(xué)位和博士(數(shù)學(xué))學(xué)位。1989年“格與拓?fù)?rdquo;獲陜西省政府科技進(jìn)步一等獎(jiǎng),4次主持國(guó)家自然科學(xué)面上項(xiàng)目,4次主持省部級(jí)自然科學(xué)面上項(xiàng)目,2次獲得中國(guó)國(guó)家留學(xué)基金委資助赴外研究。研究領(lǐng)域?yàn)闊o(wú)限維拓?fù)鋵W(xué),一般拓?fù)鋵W(xué),拓?fù)鋭?dòng)力系統(tǒng),統(tǒng)計(jì)學(xué),模糊數(shù)學(xué),格上拓?fù)鋵W(xué),格論等。 楊寒彪,五邑大學(xué)副教授,碩士導(dǎo)師,獲得日本筑波大學(xué)博士學(xué)位,主要從事主要研究無(wú)限維拓?fù)鋵W(xué)函數(shù)空間的研究。主持過(guò)國(guó)家自然科學(xué)基金青年項(xiàng)目1項(xiàng),天元項(xiàng)目1項(xiàng)目,廣東省自然科學(xué)基金面上項(xiàng)目1項(xiàng)和博士啟動(dòng)項(xiàng)目1項(xiàng)目,近年來(lái)在Topology and its Applications、Open Mathematics等國(guó)際數(shù)學(xué)期刊上發(fā)表近十篇論文。 鄔恩信,汕頭大學(xué)副教授,碩士生導(dǎo)師。2012年畢業(yè)于加拿大西安大略大學(xué)。主持1項(xiàng)國(guó)家自然科學(xué)青年基金,參加1項(xiàng)國(guó)家自然科學(xué)基金面上項(xiàng)目。研究領(lǐng)域?yàn)橥負(fù)鋵W(xué)和幾何學(xué),目前主要研究廣義流形(diffeology)相關(guān)的幾何與拓?fù)浼捌鋺?yīng)用。
圖書目錄
Contents Preface by J. van Mill iii
Preface v
Overview 1
1 Basic Theory 7 1.1 Preliminaries 7 1.2 Several theorems in general topology 14 1.3 ARs and ANRs 24 1.4 Z-sets and strong Z-sets 34 1.5 Homotopy denseness and SDAP 38 1.6 Absorbing sets and coabsorbing sets 42 1.7 Characterizations for some classical spaces 53 Note for Chapter 1 58
2 Topological Structures of Hyperspaces 61 2.1 Hyperspaces 61 2.2 Hyperspace theorem for Vietoris topology 67 2.3 Hyperspace theorem for Fell topology 71 2.4 Supplements and problems about hyperspaces 76 Note for Chapter 2 79
3 Function Spaces with Endograph Fell Topology 81 3.1 Properties of function spaces with Endograph Fell topology 81 3.2 Conditions for being metrizable of USC(X,I) 93 3.3 Conditions for being metrizable of continuous function spaces 97 3.4 A compacti?cation of metrizable continuous function space 106 3.5 Borel complexity and Baire property of space of continuous functions 111 3.6 Strong universality of continuous function space, I 121 3.7 Strong universality of continuous function space, II 132 3.8 Topological structures of function spaces 141 3.9 Remarks and problems about continuous maps 142 3.10 Appendix: Baire property 145 Note for Chapter 3 151
4 Topological Structures of Spaces of Fuzzy Numbers 153 4.1 Metrics on set of fuzzy numbers 154 4.2 Compactness and completeness of spaces of fuzzy numbers 160 4.3 Spaces of fuzzy numbers are ARs 167 4.4 Topological structures with endograph metric and Lp metrics 176 4.5 Topological structures with sendograph metric and L∞ metrics, I 186 4.6 Topological structures with sendograph metric and L∞ metrics, II 192 4.7 Remarks and problems about fuzzy numbers 201 Note for Chapter 4 204
5 Function Spaces Coming from Probability Theory 207 5.1 Spaces of copulas and subcopulas 207 5.2 Spaces of copulas and exchange copulas 216 5.3 Topological structure of space of subcouplas 221 5.4 Remarks and problems about spaces of copulas 226 Note for Chapter 5 230
6 Function Spaces Coming from Dynamical Systems 233 6.1 Box maps on closed intervals 233 6.2 Function spaces related to topological entropy 239 6.3 Topological structures of function spaces of transitive maps 251 6.4 Remarks and problems about spaces related to dynamical systems 261 Note for Chapter 6 263
7 Function Spaces Coming from Metric Measure Spaces 265 7.1 Basic knowledge on metric measure spaces 265 7.2 Topological structures of spaces of uniformly continuous functions 267 7.3 Pair of spaces on metric measure spaces 275 7.4 Remarks and problems about metric measure spaces 281 Note for Chapter 7 281