第1章 緒論 1
1.1 電子磁共振的由來 1
1.2 實驗裝置 3
1.3 研究對象 9
1.4 展望未來 10
參考文獻 11
第2章 理論基礎 13
2.1 電子磁共振的唯像描述 13
2.2 角動量和磁矩 14
2.3 磁場的單位 21
2.4 外磁場與磁矩的相互作用 22
2.5 在外磁場中磁矩與電磁輻射場的相互作用 24
2.6 核磁矩與電子磁矩在外磁場中的相互作用 26
習題 27
參考文獻 27
深入的參考讀物 27
第3章 g張量理論 29
3.1 Landé因子 29
3.2 g張量的矩陣表象 31
3.3 無規(guī)取向體系中的g張量 38
習題 42
參考文獻 42
深入的參考讀物 43
第4章 各向同性的超精細結構 44
4.1 超精細互作用的理論探討 44
4.2 各向同性超精細互作用的能量算符 45
4.3 波譜的各向同性超精細結構 50
4.4 有機π-自由基波譜的超精細結構 62
4.5 共軛體系波譜產生超精細分裂的機理 74
4.6 其他(非質子)核的超精細分裂 82
習題 85
參考文獻 86
深入的參考讀物 87
第5章 各向異性的超精細結構 88
5.1 各向異性的超精細互作用 89
5.2 各向異性超精細互作用的矩陣解析 90
5.3 實例演示 95
5.4 各向異性的超精細耦合張量與自由基的結構 101
5.5 g張量和A張量組合的各向異性性 109
5.6 無規(guī)取向體系中A張量的各向異性性 109
習題 111
參考文獻 111
深入的參考讀物 112
第6章 精細結構 113
6.1 零場分裂 114
6.2 兩個電子互作用的自旋Hamiltonian 115
6.3 三重態(tài)分子(S?=?1)體系 126
6.4 無規(guī)取向的三重態(tài)體系 133
6.5 雙基 136
習題 139
參考文獻 139
深入的參考讀物 140
第7章 弛豫與線型線寬 141
7.1 自旋弛豫的模型 141
7.2 線型、線寬和譜線強度 150
7.3 線型的動態(tài)效應 155
7.4 飽和-轉移的波譜 173
7.5 波譜信號振幅隨時間的變化 174
習題 175
參考文獻 176
深入的參考讀物 178
第8章 定量測定 179
8.1 影響波譜定量測定的主要因素 180
8.2 標準樣品的選擇與制備 190
8.3 關鍵性參數及其對EMR信號強度的影響 193
8.4 定量測定可能達到的準確度 194
習題 195
參考文獻 195
第9章 順磁性氣體和無機自由基 198
9.1 順磁性氣體的波譜 198
9.2 為研究順磁性氣體波譜的技術拓展 210
9.3 無機自由基 211
9.4 固體中的點缺陷 214
9.5 導體和半導體的波譜 217
9.6 從EMR數據中估計結構的方法 219
習題 220
參考文獻 220
深入的參考讀物 223
第10章 過渡族元素離子及其配合物 224
10.1 過渡族元素離子的電子基態(tài) 224
10.2 軌道簡并度在配位場中的解除 226
10.3 配位場的電勢 230
10.4 在配位場中過渡金屬離子的能級分裂 231
10.5 旋-軌耦合與自旋Hamiltonian 238
10.6 具有軌道非簡并的基態(tài)離子 241
10.7 具有軌道簡并的基態(tài)離子 254
10.8 稀土離子的波譜 263
10.9 過渡金屬配合物的波譜 266
習題 266
參考文獻 267
深入的參考讀物 270
實驗 271
附錄1 EMR的延伸和拓展 287
附錄2 數學準備 338
附錄3 量子力學中的角動量理論與定態(tài)微擾理論 353
附錄4 常用的物理學基本常數與換算因子 369
附錄5 常見磁性核的自然豐度、核自旋、核旋磁比和超精細耦合常數 372
CONTENTS
CHAPTER 1 INTRODUCTION 1
1.1 Origin of EMR 1
1.2 Experimental Apparatus 3
1.3 Target of Research 9
1.4 Prospects for Future 10
References 11
CHAPTER 2 Theoretical Basics 13
2.1 Phenomenal Description of EMR 13
2.2 Angular Momentum & Magnetic Moment 14
2.3 Unit of Magnetic Field 21
2.4 Interaction between Outer Magnetic Field with Moment 22
2.5 Interaction between Moment with Electromagnetic Field under Outer
Magnetic Field 24
2.6 Interaction between Nuclear Magnetic Moment with Electron Magnetic
Moment under Outer Magnetic Field 26
Exercises 27
References 27
Further Readings 27
CHAPTER 3 g-Tensor Theory 29
3.1 Landé Factor 29
3.2 Matrix Presentation of g-Tensor 31
3.3 g-Tensor of Irregular Orientation System 38
Exercises 42
References 42
Further Readings 43
CHAPTER 4 Isotropic Hyperfine Structure 44
4.1 Theoretical Discussion of Hyperfine Interaction 44
4.2 Energy Operator of Isotropic Hyperfine Interaction 45
4.3 Spectral Isotropic Hyperfine Structure 50
4.4 Hyperfine Structure of Organic π-Free Radical Spectrum 62
4.5 Mechanism of Hyperfine Splitting of Conjugate System Spectrum 74
4.6 Hyperfine Splitting of Others (non-proton) 82
Exercises 85
References 86
Further Readings 87
CHAPTER 5 Anisotropic Hyperfine Structure 88
5.1 Anisotropic Hyperfine Interaction 89
5.2 Matrix Interpretation of Anisotropic Hyperfine Interaction 90
5.3 Living Example Demonstration 95
5.4 Anisotropic Hyperfine Coupling Tensor with Free Radical Structure 101
5.5 Anisotropy of g- & A-Tensor Combinations 109
5.6 Anisotropy of A-Tensor for Irregular Orientation System 109
Exercises 111
References 111
Further Readings 112
CHAPTER 6 Fine Structure 113
6.1 Zero Field Splitting 114
6.2 Spin Hamiltonian of Two Electron Interaction 115
6.3 Spectra of Triplet (S?=?1) State Molecular System 126
6.4 Spectra of Triplet State in Irregular Orientation System 133
6.5 Biradicals 136
Exercises 139
References 139
Further Readings 140
CHAPTER 7 Relaxation and Line Shape & Line Width 141
7.1 Model of Spin Relaxation 141
7.2 Shape, Width and Intensity of Spectral Line 150
7.3 Dynamic Effects of Lineshape 155
7.4 Saturation-Transfer of Spectra 173
7.5 Intensity of Signal Dependent on Time 174
Exercises 175
References 176
Further Readings 178
CHAPTER 8 Quantitative Determination 179
8.1 Main Factors of Influence for Quantitative Determination 180
8.2 Selection & Preparation of Standard Samples 190
8.3 Crucial Parameters and Its Effect on the Intensity of EMR Signal 193
8.4 Achievable Accuracy of Quantitative Determination 194
Exercises 195
References 195
CHAPTER 9 Paramagnetic Gases & Inorganic Radicals 198
9.1 Spectra of Paramagnetic Gases 198
9.2 Expend of Research for EMR of Paramagnetic Gases 210
9.3 Inorganic Radicals 211
9.4 Point Defects in Solid States 214
9.5 Spectra of Conductor & Semiconductor 217
9.6 Method of the Structure Estimated by the Data of EMR 219
Exercises 220
References 220
Further Readings 223
CHAPTER 10 Transition Metal Ion & Its Complexes 224
10.1 Electron Ground State of Transition Metal Ion 224
10.2 Orbital Degeneracy Rescinded by Ligand Field 226
10.3 Electric Potential of Ligand Field 230
10.4 Energy Level Splitting of Transition Metal Ion in Ligand Field 231
10.5 Spin-Orbital Coupling & Spin Hamiltonian 238
10.6 Ground State Ion with Orbital Non-degeneracy 241
10.7 Ground State Ion with Orbital Degeneracy 254
10.8 EMR Spectra of Rare Earth Ions 263
10.9 EMR Spectra of Transition Metal Complexes 266
Exercises 266
References 267
Further Readings 270
Experiments 271
Appendix 1 Stretch & Expend of EMR 287
Appendix 2 Mathematical Preparations 338
Appendix 3 Angular Momentum & Stable State Perturbation Theory in
Quantum Mechanics 353
Appendix 4 Basic Constants & Conversion Factors in Common Use 369
Appendix 5 The Natural Abundance, Nuclear Spin, Nuclear Magnetiogyric Ratio
of Common Magnetic Nuclei and Their Hyperfine Coupling
Parameters 372