韋來生韋來生,男,1944年2月出生于江蘇江都。教授,博士生導(dǎo)師。1973-1995年在中國科技大學(xué)數(shù)學(xué)系, 1995年至今在中國科技大學(xué)統(tǒng)計(jì)與金融系從事教學(xué)科研工作。2004年獲安徽省優(yōu)秀教師稱號(hào)。美國Mathematical Reviews 評(píng)論員。主要研究方向: Bayes分析和經(jīng)驗(yàn)Bayes 方法、線性模型參數(shù)估計(jì)和概率密度估計(jì)等。1992年曾訪問德國Dortmund大學(xué)統(tǒng)計(jì)系6個(gè)月,2000年曾訪問加拿大Waterloo大學(xué)統(tǒng)計(jì)與精算科學(xué)系3個(gè)月,并順訪了加拿大Guelph大學(xué)數(shù)學(xué)與統(tǒng)計(jì)系、美國新澤西州立大學(xué)統(tǒng)計(jì)系和紐約哥倫比亞大學(xué)統(tǒng)計(jì)系。曾主持和參加國家自然科學(xué)基金、高等學(xué)校博士點(diǎn)基金和中科院特持費(fèi)基金等多項(xiàng)科研工作,研究工作曾獲中國科技大學(xué)科研成果一等獎(jiǎng)和安徽省科技進(jìn)步四等獎(jiǎng)等。研究工作在《中國科學(xué)》、《數(shù)學(xué)學(xué)報(bào)》、《數(shù)學(xué)年刊》、《Ann.Inst.Statist.Math.》 、《Statisitca Sinica》、《Statistics Probability Letters》、《J. of Stat. Plann. & Inference》等國內(nèi)外核心期刊上發(fā)表論文60篇。論文目錄:[1] Wei Laisheng, Fang Zhaoban and Li Jinping, The asymptotically optimal empirical Bayesestimation about a class of Uniform distrbution (with Fang and Li), Journal of MathematicalResearch & Exposition, 3(1983), 150-152.[2] 韋來生,均勻分布簇 U(0,θ) 參數(shù)的經(jīng)驗(yàn) Bayes 估計(jì)的收斂速度, 應(yīng)用數(shù)學(xué)學(xué)報(bào), 6(1983), 485-493.[3] 韋來生,一類 Gamma 分布位置參數(shù)的經(jīng)驗(yàn) Bayes 估計(jì)的收斂速, 中國科學(xué)技術(shù)大學(xué)學(xué)報(bào), 13(1983), 143-152.[4] 方兆本, 李金平, 張念范, 韋來生,一類均勻分布參數(shù)的經(jīng)驗(yàn) Bayes 估計(jì)的收斂速度,應(yīng)用數(shù)學(xué)學(xué)報(bào), 6(1983), 476-484.[5] Wei Laisheng, On the Lp convergence rates of kernal estimate of nonparametric regressionfunction, Journal of China University of Science & Technology, 14(1984), 339-346.[6] 韋來生,單邊截?cái)嘈头植即匚恢脜?shù)的經(jīng)驗(yàn) Bayes 估計(jì)的收斂速度, 數(shù)學(xué)年刊, 6:A(1985), 193-202.[7] Wei Laisheng, The convergence rates of asymptotically Bayes discrimination,Acta Mathematica Scientia, 5(1985), 68-78.[8] 韋來生,連續(xù)形多參數(shù)指數(shù)簇參數(shù)的漸進(jìn)最優(yōu)的經(jīng)驗(yàn) Bayes 估計(jì), 應(yīng)用概率統(tǒng)計(jì), 1(1985), 127-133.[9] Wei Laisheng and Su Chun, On the pointwise Lp convergence rates of nearest neighborestimate of nonparametric regression function, Journal of Mathematical Research &Exposition, 6(1986), 117-124.[10] 韋來生, 連續(xù)形多參數(shù)指數(shù)簇參數(shù)的經(jīng)驗(yàn) Bayes 估計(jì)的收斂速度, 數(shù)學(xué)學(xué)報(bào), 30(1987),272-279.[11] Wei Laisheng Asymptotically optimal empirical Bayes estimation for parameters of two-sided truncation distribution families, Chin. Ann. of Math., 10:B(1), 1989, 94-104.[12] Wei Laisheng, The convergence rates of empirical Bayes estimation for parameters oftwo-sided truncation distribution families, Acta Mathematica Scientia, 9(1989), 403-413.[13] Wei Laisheng, An empirical Bayes two-sided test problem for continuous one-parameterexponential families, Systems Science and Mathematical Science, 2(1989), 369-384.[14] Wei Laisheng, Empirical Bayes test of regression coefficient in a multiple linear regressionmodel, Acta Mathematicae Applicatae Sinica, 6(1990), 251-262.[15] 韋來生,一類離散型單參數(shù)指數(shù)簇參數(shù)的雙側(cè)的經(jīng)驗(yàn) Bayes 檢驗(yàn)問題. 應(yīng)用概率統(tǒng)計(jì),7(1991), 299-310.[16] Singh, R.s. and Wei Laisheng, Empirical Bayes with rates and best rates of convergence inu(x)c(θ)exp{-x/θ}-family: Estimation Case, Ann. Inst. Statist. Math., 44(1992), 435-449.[17] 韋來生,二項(xiàng)分布參數(shù)的經(jīng)驗(yàn)Bayes檢驗(yàn)問題, 數(shù)學(xué)雜志, 13(1993), 21-28.[18] Zhanng Shunpu and Wei Laisheng, Asymptotically optimal empirical Bayes estimation inmultiple linear regression model, Appl. Math, A Journal of Chinese Universitys, 9:B(1994),245-258.[19] Wei Laisheng and Zhanng Shunpu, The converrgence rates of empirical Bayes estimation inmultiple linear regression model, Ann. Inst. Statist. Math., 47(1995), 81-97.[20] Wei Laisheng and Gotz trenkler, Mean square error matrix superiority of empirical Bayesestimators under misspecification, Test, 4(1995), 187-205.[21] Yang Yaning and Wei Laisheng, Convergence rtaes of asymptotically optimal empiricalBayes estimation for parameters of multi-parameter discrete exponential family, ChineseJ. Appl. Prob. and Statist., 11(1995), 92-102.[22] Yang Yaning and Wei Laisheng, Asymptotically optimal empirical Bayes estimation for theparameters of multi-parameter discrete exponential family, Acta Mathematica Scientia, 16(1996), 15-22.[23] Gotz Trenkler and Wei Laisheng, The Bayes estimators in a misspecified linear regressionmodel, Test,5(1996), 113-123.[24] 韋來生, PC 準(zhǔn)則下錯(cuò)誤指定模型中回歸系數(shù)有約束 LS 估計(jì)的優(yōu)良性, 中國科學(xué)技術(shù)大學(xué)學(xué)報(bào), 26(1996), 277-283.[25] Wei Laisheng, Empirical Bayes estimation for estimable function of regression coefficient ina multiple linear regression model, Acta Mathematica Scientia, 16 Supp. (1996), 22-33.[26] 韋來生, 方差分析模型中參數(shù)的經(jīng)驗(yàn) Bayes 估計(jì)及其優(yōu)良性問題, 高校應(yīng)用數(shù)學(xué)學(xué)報(bào),12: A (1997), 163-174.[27] 韋來生, 楊亞寧, PC 準(zhǔn)則下回歸系數(shù)的一類線性估計(jì)的優(yōu)良性, 應(yīng)用概率統(tǒng)計(jì), Vol.13(1997), 225-234.[28] Tamaschke, S., G. Trenkler and L.S. Wei, Mean square error matrix properties of Bayesestimation for incorrect prior information under misspecification, Journal of the ItalianStatistical Society, Vol.6(1997), No.3, 273-284.[29] Wei Laisheng, Convergence rates of empirical Bayesian estimation in a class of linearmodels, Statistica Sinica, 8(1998), 589-605.[30] Wei Laisheng, Asymptotically optimal empirical Bayes estimation in one-way ANOVAmodel, Systems Science and Mathematical Science, 12(1999), No.1, 13-22.[31] Zhang Shunpu and Wei Laisheng, A note about convergence rates for empirical Bayesestimation of parameters in multi-parameter exponential families, Commum.Statist.-Theory Meth., 28(6), 1999, 1273-1291.[32] 韋來生,林明, 誤指定模型中回歸系數(shù)混合估計(jì)的小樣本性質(zhì),中國科學(xué)技術(shù)大學(xué)學(xué)報(bào), 29(1999), 253-259.[33] 韋來生,一類線性模型中參數(shù)的經(jīng)驗(yàn) Bayes 檢驗(yàn)問題,數(shù)學(xué)年刊,20A:5(1999), 617-628.Wei Laisheng, Empirical Bayes test problems for parameters in a class of linear models,Chinese Journal of Contemporary Mathematics, 20(4), 1999, 501-514.[34] 韋來生,錯(cuò)誤先驗(yàn)假定下回歸系數(shù) Bayes 估計(jì)的小樣本性質(zhì),應(yīng)用概率統(tǒng)計(jì),16 (2000), 71-80.[35] 黃元亮,陳桂景,韋來生,廣義G-M 模型參數(shù)估計(jì)的相對(duì)效率,數(shù)學(xué)研究與評(píng)論,第20 期(2000),第1期, 103-108[36] 韋來生,刻度指數(shù)族參數(shù)的經(jīng)驗(yàn)BAYES檢驗(yàn)問題:NA樣本情形,應(yīng)用數(shù)學(xué)學(xué)報(bào),23(2000), 403-412.[37] Singh, R.S and Wei Laisheng, Nonparametrioc empirical Bayes procedure, asymptoticoptimality and rates of convergence for two-tail tests in exponential family, NonparametricStatistics, vol.12 (2000), 475-501.[38] 繆柏奇,戴小莉,韋來生等,課堂教學(xué)評(píng)估問卷的統(tǒng)計(jì)分析,中國高等教育評(píng)估,2000.2, 31-35.[39] 韋來生,NA 樣本情形概率密度函數(shù)核估計(jì)的相合性, 系統(tǒng)科學(xué)與數(shù)學(xué), 21(2001),79-87.[40] 王立春, 韋來生, 刻度指數(shù)族參數(shù)的漸近最優(yōu)的經(jīng)驗(yàn) Bayes 估計(jì), 中國科學(xué)技術(shù)大學(xué)學(xué)報(bào), 32(1), 2002. 62-69.[41] Lin Ming and Wei Laisheng, The small sample properties of the principal componentsestimator for regression coefficients. Commum. Statist. Theory and Meth., 31(2),2002,271-283.[42] 林明,韋來生,回歸系數(shù) Stein 壓縮估計(jì)的小樣本性質(zhì), 應(yīng)用數(shù)學(xué)學(xué)報(bào),25(3), 2002,497-504.[43] 王立春, 韋來生, 刻度指數(shù)族參數(shù)的經(jīng)驗(yàn) Bayes 估計(jì)的收斂速度. 數(shù)學(xué)年刊,23A: 5(2002), 555-564.[44] Wei Laisheng and Chen Jiahua, Empirical Bayes estimation and its superiority for two-wayclassification model. Statistics and Probability Letters, 63, 2003, 165-175.[45] 韋來生, 袁家成, 指數(shù)分布定數(shù)截尾情形失效率函數(shù)的經(jīng)驗(yàn)Bayes檢驗(yàn)問題.應(yīng)用概率統(tǒng)計(jì),19(2) 2003, 130-138.[46] 韋來生, 王立春, 隨機(jī)效應(yīng)模型中方差分量的經(jīng)驗(yàn)Bayes檢驗(yàn)問題. 高校應(yīng)用數(shù)學(xué)學(xué)報(bào), 19 (2004), 97——108.[47] 陳玲, 韋來生, 連續(xù)型單參指數(shù)族參數(shù)的經(jīng)驗(yàn)Bayes檢驗(yàn)問題,應(yīng)用數(shù)學(xué),17(2), 2004,263-270.[48] 魏莉, 韋來生, 刻度指數(shù)族參數(shù)的經(jīng)驗(yàn)Bayes檢驗(yàn)問題, 34(1), 2004, 1-10.[49] Wei Laisheng and Ding Xiao, On Empirical Bayes Estimation of Variance Components inRandom Effects Model. JSPI, 123(2004), 374-384.[50] 韋來生, 王立春, 隨機(jī)效應(yīng)模型中方差分量漸近最優(yōu)的經(jīng)驗(yàn)Bayes計(jì),數(shù)學(xué)研究與評(píng)論,2004, 24(4),[51] Zhang Weiping , Wei Laisheng, Yang Yanning,The Superiority of Empirical BayesEstimator of Parameters in Linear Model, Statistics and Probability Letter, 72 (2005), 43-50.[52] Wei Laisheng and Zhang Weiping, Empirical Bayes Test Problems for VarianceComponents in Random Effects Model. Acta Mathematica Scientia, 25B (2005): 274-282.[53] 張偉平,韋來生,單向分類隨機(jī)效應(yīng)模型中方差分量的漸近最優(yōu)經(jīng)驗(yàn)Bayes估計(jì),系統(tǒng)科學(xué)與數(shù)學(xué), 25 (2005),106-117.[54] Zhang Weiping , Wei Laisheng, On Bayes Linear Unbiased Estimation of EstimableFunctions for the Singular Linear Model, Since in China,2005, 48 (7), 898-903.[55] 丁曉, 韋來生, 雙指數(shù)分布位置參數(shù)經(jīng)驗(yàn)Bayes估計(jì)問題. 數(shù)學(xué)雜志,25 (4),2005,413-420.[56] Wei Laisheng and Wang Lichun , Empirical Bayes estimation of variance componentsintwo-way classification random effects model, 中國科學(xué)院研究生院學(xué)報(bào),2005,22(5),545-553.[57] 陳玲,韋來生,連續(xù)型單參數(shù)指數(shù)族參數(shù)的經(jīng)驗(yàn)Bayesg估計(jì)問題:NA 樣本情形,數(shù)學(xué)研究,2006,39(1), 44-50.[58] 宋慧明,韋來生, 線性模型中回歸系數(shù)混合估計(jì)的相對(duì)效率,中國科學(xué)技術(shù)大學(xué)學(xué)報(bào), 2006,36(9), 932-935.[59] Wang Lichun, Wei Laisheng, Asymptotically optimal empirical Bayes decision,應(yīng)用數(shù)學(xué),2006, 19(2),356-362.[60] 洪 堅(jiān),韋來生,指數(shù)分布定數(shù)截尾樣本下經(jīng)驗(yàn)Bayes雙側(cè)檢驗(yàn)問題,中國科學(xué)技術(shù)大學(xué)學(xué)報(bào), 2006,36(12).